
FALL 2024 MATH 147 : MIDTERM EXAM II SOLUTIONS

When applicable, show all work to receive full credit. When in doubt, it is better to show more work than less.

Please work each problem on a separate sheet of paper, using the reverse side if necessary. Be sure
to put your name on each page of your solutions. Good luck on the exam!

1. Short answer (30 points)

(i) Define
∫ ∫

R
f(x, y) dA, for R a closed and bounded region in R2.

(ii) Under what conditions on f(x, y) is it reasonable to expect that the integral in (i) exists?
(iii) Find a partial sum for

∫ ∫
R
2x dA that approximates the true value to within 10−1, for R = [0, 1]× [0, 1].

(iv) Let B ⊆ R3 be the solid in the first octant bounded by x+ 2y + 3z = 1, the xy-plane, the xz-plane, and the
yz-plane. Set up the triple integral

∫ ∫ ∫
B
2xyz dV is three different ways, so that the orders of integration

are: dzdydx; dxdzdy; dydxdz.
(v) Find the transformation G(u, v) from the uv-plane to the xy-plane that takes the unit square in the uv-plane

to the parallelogram P obtained by translating the lower left corner of the parallelogram P ′ spanned by the

vectors i⃗+ 2⃗j, 2⃗i+ j⃗ to the point (3,5). What is the Jacobian of G(u, v)?

Solution. (i) There are several possible ways to answer this question. The easiest: Subdivide R into small regions
R1, . . . , Rn, each of area ∆A. Pick a point Pi ∈ Ri. Then

∫ ∫
R
f(x, y) dA = limn→∞ Σn

i=1f(Pi)∆A.

Solution. For (i): Subdivide R into small pieces of area Ai, each of size ∆A. Choose Pi ∈ Ai. Form the sum∑
i f(Pi)∆A. Take the limit at ∆A → 0. For (ii): The integral in (i) exists if f(x, y) is continuous on R.

For (ii): If f(x, y) is continuous on R, the integral in (i) exists.

For (iii): There are many answers. First note that
∫ ∫

R
2x dA = 1. Subdivide each [0,1] into to intervals of equal

sizes. This gives a subdivision of R into four squares of area 1
4
. If we evaluate f(x, y) at each center point and

multiply by 1
4
, we get the following partial sum:
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For (iv):
∫ 1

2
0

∫ 1
3
− 2

3
y

0

∫ 1−3z−2y

0
2xyz dxdzdy =

∫ 1
3
0

∫ 1−3z

0

∫ 1
2
− 3

2
z− 1

2
x

0
2xyz dydxdz =

∫ 1

0

∫ 1
2
− x

2
0

∫ 1
3
− 2

3
y− 1

3
x

0
2xyz dzdydz.

For (v): G(u, v) = (u+ 2v + 3, 2u+ v + 5) and Jac(G) = −3.

2. Let B denote that portion of the solid ball of radius R centered at the origin that lies in the first octant. Calculate∫ ∫ ∫
B
xyz dV . (20 points)

Solution. Using spherical coordinates we have:∫ ∫ ∫
B

xyz dV =

∫ π
2

0

∫ π
2

0

∫ R

0

(ρ sin(ϕ) cos(θ))(ρ sin(ϕ) sin(θ))(ρ cos(ϕ)) ρ2 sin(ϕ) dρdϕdθ

=

∫ π
2

0

∫ π
2

0

∫ R

0

ρ5 sin3(ϕ) cos(ϕ) cos(θ) sin(θ) dρdϕdθ

=
R6

6

∫ π
2

0

∫ π
2

0

sin3(ϕ) cos(ϕ) cos(θ) sin(θ) dϕdθ

=
R6

6
· {

∫ π
2

0

sin3(ϕ) cos(ϕ) dϕ} · {
∫ π

2

0

sin(θ) cos(θ) dθ}

=
R6

6
· { sin

4(ϕ)

4
}

π
2
0 · { sin

2(θ

2
}

π
2
0

=
R6

6
· 1
4
· 1
2
=

R6

48
.

3. Let D denote the region in R2 between the ellipses E1 : (x−4)2

9
+ (y+7)2

16
= 1 and E2 : (x−4)2

36
+ (y+7)2

64
= 1. Calculate∫ ∫

D

√
16(x− 4)2 + 9(y + 7)2 dA. (20 points)
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Solution. We will transform the ellipses to circles centered at the origin in the uv-plane, and then use polar coordinates.
First use the transformation G(u, v) = (3u+ 4, 4v − 7) = (x, y), which has Jac(G) = 12. Notice that if we substitute
these equations into the equations for the ellipses, E1 becomes the circle C1 : u2 + v2 = 1 and E2 becomes the circle

C2 : u2 + v2 = 4. In addition, the integrand becomes 12(u2 + v2)
1
2 . Thus, if we let D0 denote the region in the

uv-plane between the circles C1 and C2, we have∫ ∫
D

√
16(x− 4)2 + 9(y + 7)2 dA =

∫ ∫
D0

12(u2 + v2)
1
2 12 dA

= 144

∫ 2π

0

∫ 2

1

r · r dr dθ

= 144

∫ 2π

0

r3

3

∣∣∣∣r=2

r=1

dθ

= 144 · 7
3
· 2π

= 672π.

4. Let D be the unbounded region in R2 consisting of all points (x, y) such that x2 + y2 ≥ 4. Sketch a picture of D
and then evaluate the improper integral

∫ ∫
D

17
(x2+y2+1)3

dxdy. (20 points)

Solution. Using polar coordinates,

∫ ∫
D

17

(x2 + y2 + 1)3
dxdy =

∫ 2π

0

∫ ∞

2

17

(r2 + 1)3
rdrdθ

= 2π

∫ ∞

2

17

(r2 + 1)3
rdr

= 2π lim
b→∞

∫ b

2

17

(r2 + 1)3
rdr

= 2π lim
b→∞

−17

4
· (r2 + 1)−2

∣∣∣∣b
2

= 2π lim
b→∞

{−17

4
· (b2 + 1)−2 +

17

4
· (22 + 1)−2}

=
17π

50
.

5. Calculate
∫ ∫

R
( 2y

4

x2 + 3y2

x
)exy dA, where R is the region in the xy-plane bounded by y2 = 3x, y2 = 2x, xy = 2,

xy = 1. Hint: It’s easier to work with the inverse transform F (x, y) of G(u, v) taking the xy-plane to the uv-plane.
You can use the fact that Jac(G) = 1

Jac(F )
. (20 points)

Solution. Set u = y2

x
and v = xy. Note that this defines the inverse F (x, y) of the change of variables. We have to

calculate G(u, v) to solve the problem.

To find the domain of integration in the uv-plane: Note y2 = 2x implies u = y2

x
= 2. This means F carries the

parabola y2 = 2x to the line u = 2. Therefore, G carries the line u = 2 to the parabola y2 = 2x. Similarly, F carries
the parabola y2 = 3x to the line u = 3.

Also: F carries the hyperbolas xy = 1 and xy = 2 to the lines v = 1 and v = 2. Thus G(R0) = R, where R0 is the
rectangle 2 ≤ u ≤ 3 and 1 ≤ v ≤ 2.

Jac(F ) =

∣∣∣∣∣− y2

x2
2y
x

y x

∣∣∣∣∣ = − 3y2

x
= −3v.

Thus, |Jac(G)| = | − 1
3v
| = 1

3v
.
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Thus, ∫ ∫
R

(2
y4

x2
+ 3

y2

x
)exy dA =

∫ 2

1

∫ 3

2

(2u2 + 3u)ev
1

3u
dudv

=

∫ 3

2

∫ 2

1

(
2

3
u+ 1)ev dudv

=

∫ 2

1

ev(
1

3
u2 + u)

∣∣∣∣u=3

u=2

dv

=
8

3

∫ 2

1

ev dv

=
8

3
(e2 − e).

6. Let B denote the solid ellipsoid 0 ≤ (x−1)2

a2 + (y−1)2

b2
+ (z−1)2

c2
≤ 1 centered at (1, 1, 1). For 20 points, use what you

know about improper single and double integrals to evaluate the improper integral

∫ ∫ ∫
B

ln

√
(x− 1)2

a2
+

(y − 1)2

b2
+

(z − 1)2

c2
dV.

You may use the fact that
∫
x2 ln(x) dx = x3

3
· (ln(x)− 1

3
).

Solution. Since there is only one point at which the integrand is undefined, this integral can be calculated by reducing
to a single improper integral. First, change the domain of integration to C, the solid sphere of radius one, centered
at the origin, and then use spherical coordinates. Or this can be done all at once by setting

x = aρ sin(ϕ) cos(θ) + 1

y = bρ sin(ϕ) sin(θ) + 1

z = cρ sin(ϕ) sin(θ) + 1.

The Jacobian of the transformation is abcρ2 sin(ϕ). Thus,

∫ ∫ ∫
B

ln

√
(x− 1)2

a2
+

(y − 1)2

b2
+

(z − 1)2

c2
dV =

∫ ∫ ∫
C

ln(ρ) · abcρ2 sin(ϕ) dρdϕdθ.

= 2πabc

∫ π

0

∫ 1

0

ln(ρ)ρ2 sin(ϕ) dρdϕ

= 4πabc

∫ 1

0

ln(ρ)ρ2 dρ

= 4πabc lim
t→0

∫ 1

t

ρ2 ln(ρ) dρ

= 4πabc lim
t→0

(
ρ3

3
ln(ρ)− ρ3

9
)

∣∣∣∣1
t

= 4πabc lim
t→0

{(0− 1

9
)− (

t3

3
ln(t)− t3

9
)}

= 4πabc(−1

9
− 0)

= −4

9
πabc.

7. Let B denote the solid sphere of radius R centered at the origin in R3, and let P = (0, 0, R) denote the north pole.
Find the average value of the distance of points (x, y, z) ∈ B to the point P . Note: (a+ b)3 − (a− b)3 = 6a2b+ 2b3.
(20 points)
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Solution. We need to find the average value of the function f(x, y, z) =
√

x2 + y2 + (z −R)2 over the domain B. So
we first calculate∫ ∫ ∫

B

√
x2 + y2 + (z −R)2 dV =

∫ 2π

0

∫ π

0

∫ R

0

√
(ρ sin(ϕ) cos(θ))2 + (ρ sin(ϕ) sin(θ))2 + (ρ cos(ϕ)−R)2 ρ2 sin(ϕ) dρ dϕ dθ

= 2π

∫ π

0

∫ R

0

√
ρ2 +R2 − 2ρR cos(ϕ)ρ2 sin(ϕ) dρ dϕ

= 2π

∫ R

0

∫ π

0

√
ρ2 +R2 − 2ρR cos(ϕ)ρ2 sin(ϕ) dϕ dρ.

We can use u-substitution on the inner integral, by setting u = ρ2 + R2 − 2ρR cos(ϕ). Then upon differentiating,
du = 2ρR sin(ϕ) dϕ, so that sin(ϕ) dϕ = 1

2ρR
du. When ϕ = 0, u = (R − ρ)2 and when ϕ = π, u = (R + ρ)2, so

continuing, we have ∫ ∫ ∫
B

√
x2 + y2 + (z −R)2 dV =

∫ R

0

∫ (R+ρ)2

(R−ρ)2

√
uρ2 · 1

2ρR
du dρ

=
π

R

∫ R

0

∫ (R+ρ)2

(R−ρ)2
ρ
√
u du dρ

=
π

R

∫ R

0

2

3
u

3
2 ρ

∣∣∣∣u=(R+ρ)2

u=(R−ρ)2
dρ

=
2π

3R

∫ R

0

ρ{(R+ ρ)3 − (R− ρ)3} dρ

=
2π

3R

∫ R

0

6R2ρ2 + 2ρ4 dρ

=
2π

3R
{2R2ρ3 +

2

5
ρ5}ρ=R

ρ=0

=
8

5
πR4.

Thus,

average distance to (0, 0, R) =
1

vol(B)

∫ ∫ ∫
B

√
x2 + y2 + (z −R)2 dV

=
3

4πR3
· 8
5
πR4

=
6R

5
.

Bonus Problem. The Reuleaux triangle consists of an equilateral triangle and three regions, each of them bounded
by a side of the triangle and an arc of a circle of radius s centered at the opposite vertex of the triangle. Show that

the area of the Reuleaux triangle in the following figure of side length s is s2

2
(π −

√
3). (20 points)

Solution. If we think of the lower left corner of the inner equilateral triangle as being at the origin, then the area of

the first pie-shaped region is
∫ π

3
0

∫ s

0
r drdθ = πs2

6
. The area of three such regions is πs2

2
. These three regions cover

the Reuleaux triangle, but in doing so, we have counted the area of the inner equilateral triangle three times. Since
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this area of the triangle is
√
3s2

4
, the area of the Reuleaux triangle is:

πs2

2
− 2 ·

√
3s2

4
=

s2

2
(π −

√
3).
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